Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2772: 353-370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411828

RESUMO

Confocal laser scanning microscopy (CLSM) is an advanced microscopy technique based on fluorescence technology which produces sharp images of a specimen in a single focal plane. The optical sectioning by CLSM allows to have z-stacks which can be further processed into 3D reconstructions. These then provide the option of variable perspectives and additional precise data evaluation on structural and anatomical alterations. Here, we used CLSM to image the thylakoids of cyanobacteria and the endoplasmic reticulum (ER) in moss protonemata as an example. Then, out of the confocal z-stacks, we create 3D constructions of the membranes and their alterations to present a holistic, structural view from different angles.


Assuntos
Retículo Endoplasmático , Imageamento Tridimensional , Técnicas Histológicas , Membranas , Microscopia Confocal
2.
J Microsc ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282132

RESUMO

Plants have been affected by water stress ever since they settled on dry land. In severe and persisting drought, plant leaves are wilting. However, a documentation at the anatomical level of the minute changes that occur before wilting is challenging. On the other hand, understanding the anatomical alteration in plant leaves with respect to water stress provides a stronger basis to study molecular and submolecular processes through which plants enhance drought tolerance. In this work, we applied an affordable method to visualise mesophyll layers of Arabidopsis thaliana cell lines without preparation steps that would alter the volume of the cells. We rapidly plunge-froze the leaves in liquid nitrogen, cut them while in the N2 bath, and immediately imaged the mesophyll cross sections in a scanning electron microscope. We applied a reduction of watering from 60 to 40 to 20 mL per day and investigated two time points, 7 and 12 days, respectively. Interestingly, the overall thickness of leaves increased in water stress conditions. Our results showed that the palisade and spongy layers behaved differently under varying watering regimes. Moreover, the results showed that this method can be used to image leaf sections after drought stress without the risk of artefacts or swelling caused by contact to liquids as during chemical fixation.

3.
Plants (Basel) ; 12(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068597

RESUMO

Increasing pollution in the environment calls for the precise determination of metal toxicity in plants as they are at the base of the food chain. Mosses are often employed as biomonitors and provide good models for testing metal adsorption. However, species may react differently and many studies only look at one metal at a time, even though toxicity levels are affected by metal combinations. In this study, the effects of CuCl2, MnCl2, FeCl2, and Sb-acetate were examined individually and in combinations on the moss species Pohlia drummondii and Physcomitrium patens. In general, the two species reacted differently to the presence of trace metals; although, for both, the tolerance limit was at 100 µM. Overall, individual metals were less toxic than combinations, with some exceptions for Fe and Mn in P. patens. Additionally, we demonstrate that multiple combinations of metals are especially toxic if Cu is present.

4.
Plants (Basel) ; 12(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679054

RESUMO

Carnivorous plants adsorb prey-derived nutrients partly by endocytosis. This study quantifies endocytosis in Drosophyllum lusitanicum, Drosera capensis, Drosera roseana, Dionaea muscipula and Nepenthes × ventrata. Traps were exposed to 1% fluorescent-labeled albumin (FITC-BSA), and uptake was quantified repeatedly for 64 h. Formation of vesicles started after ≤1 h in adhesive traps, but only after 16 h in species with temporary stomach (D. muscipula and N. × ventrata). In general, there are similarities in the observed species, especially in the beginning stages of endocytosis. Nonetheless, further intracellular processing of endocytotic vesicles seems to be widely different between species. Endocytotic vesicle size increased significantly over time in all species except in D. capensis. Fluorescence intensity of the endocytotic vesicles increased in all species except D. muscipula. After 64 h, estimates for FITC-BSA absorption per gland ranged from 5.9 ± 6.3 ng in D. roseana to 47.8 ± 44.3 ng in N. × ventrata, demonstrating that endocytosis substantially contributes to the adsorption of prey-derived nutrients.

5.
Plants (Basel) ; 11(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501252

RESUMO

Drosera, Droseraceae, catch prey with sticky tentacles. Both Australian Drosera allantostigma and widespread D. rotundifolia show three types of anatomically different tentacles: short, peripheral, and snap-tentacles. The latter two are capable of fast movement. This motion was analysed after mechanical, chemical, and electrical stimulation with respect to response rate, response time, and angular velocity of bending. Compared to D. rotundifolia, D. allantostigma responds more frequently and faster; the tentacles bend with higher angular velocity. Snap-tentacles have a lower response rate, shorter response time, and faster angular velocity. The response rates for chemical and electrical stimuli are similar, and higher than the rates for mechanical stimulus. The response time is not dependent on stimulus type. The higher motility in D. allantostigma indicates increased dependence on mechanical prey capture, and a reduced role of adhesive mucilage. The same tentacle types are present in both species and show similar motility patterns. The lower response rate of snap-tentacles might be a safety measure against accidental triggering, since the motion of snap-tentacles is irreversible and tissue destructive. Furthermore, tentacles seem to discern stimuli and respond specifically. The established model of stereotypical tentacle movement may not fully explain these observations.

6.
Plants (Basel) ; 11(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35270090

RESUMO

Lichens are symbiotic organisms with an extraordinary capability to colonise areas of extreme climate and heavily contaminated sites, such as metal-rich habitats. Lichens have developed several mechanisms to overcome the toxicity of metals, including the ability to bind metal cations to extracellular sites of symbiotic partners and to subsequently form oxalates. Calcium is an essential alkaline earth element that is important in various cell processes. Calcium can serve as a metal ligand but can be toxic at elevated concentrations. This study investigated calcium-rich and calcium-poor sites and the lichen species that inhabit them (Cladonia sp.). The calcium content of these lichen species were analyzed, along with localized calcium oxalate formed in thalli collected from each site. The highest concentration of calcium was found in the lichen squamules, which can serve as a final deposit for detoxification. Interestingly, the highest content of calcium in Cladonia furcata was localized to the upper part of the thallus, which is the youngest. The produced calcium oxalates were species-specific. Whewellite (CaC2O4∙H2O) was formed in the case of C. furcata and weddellite (CaC2O4∙2H2O) was identified in C. foliacea.

7.
Protoplasma ; 258(6): 1251-1259, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33934216

RESUMO

The alkaliphilic cyanobacterium Limnospira fusiformis is an integral part in food webs of tropical soda lakes. Recently, sudden breakdowns of Limnospira sp. blooms in their natural environment have been linked to cyanophage infections. We studied ultrastructural details and prophage components in the laboratory by means of confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). For a comparison at the subcellular level, we included transmission electron microscopy (TEM) material of infected cells collected during a field survey. Compared to TEM, CLSM has the advantage to rapidly providing results for whole, intact cells. Moreover, many cells can be studied at once. We chemically induced lysogenic cyanophages by means of mitomycin C (MMC) treatments and studied the ultrastructural alterations of host cells. In parallel, the number of cyanophages was obtained by flow cytometry. After treatment of the culture with MMC, flow cytometry showed a strong increase in viral counts, i.e., prophage induction. CLSM reflected the re-organization of L. fusiformis with remarkable alterations of thylakoid arrangements after prophage induction. Our study provides a first step towards 3D visualization of ultrastructure of cyanobacteria and showed the high potential of CLSM to investigate viral-mediated modifications in these groups.


Assuntos
Cianobactérias , Tilacoides , Microscopia Confocal , Ativação Viral
8.
Plants (Basel) ; 10(2)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572599

RESUMO

Bryophytes are widely used to monitor air quality. Due to the lack of a cuticle, their cells can be compared to the roots of crop plants. This study aimed to test a hypothetical relation between metal tolerance and cell shape in biomonitoring mosses (Hypnum cupressiforme, Pleurozium schreberi, Pseudoscleropodium purum) and metal sensitive species (Physcomitrium patens, Plagiomnium affine). The tolerance experiments were conducted on leafy gametophytes exposed to solutions of ZnSO4, ZnCl2, and FeSO4 in graded concentrations of 1 M to 10-8 M. Plasmolysis in D-mannitol (0.8 M) was used as a viability measure. The selected species differed significantly in lamina cell shape, cell wall thickness, and metal tolerance. In those tested mosses, the lamina cell shape correlated significantly with the heavy metal tolerance, and we found differences for ZnSO4 and ZnCl2. Biomonitoring species with long and thin cells proved more tolerant than species with isodiametric cells. For the latter, "death zones" at intermediate metal concentrations were found upon exposure to ZnSO4. Species with a greater tolerance towards FeSO4 and ZnSO4 had thicker cell walls than less tolerant species. Hence, cell shape as a protoplast-to-wall ratio, in combination with cell wall thickness, could be a good marker for metal tolerance.

9.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375227

RESUMO

In conventional light microscopy, the adjacent cell walls of filamentous moss protonemata are seen from its narrow side thereby obscuring the major area of cell-cell connection. Optical sectioning, segmentation and 3D reconstructions allow the tilting and rotation of intracellular structures thereby greatly improving our understanding of interaction between organelles, membranes and the cell wall. Often, the findings also allow for conclusions on the respective functions. The moss Physcomitrium (Physcomitrella) patens is a model organism for growth, development and morphogenesis. Its filamentous protonemata are ideal objects for microscopy. Here, we investigated the cell wall between two neighboring cells and the connection of membranes towards this wall after plasmolysis in 0.8 M mannitol. An m-green fluorescent protein (GFP)-HDEL cell line was used to visualize the endoplasmatic reticulum (ER), the plasma membrane (PM) was stained with FM4-64. Our studies clearly show the importance of cell-cell contacts in P. patens protonemata. In 86% of the investigated cell pairs, at least one of the protoplasts remained fully attached to the adjacent cell wall. By tilting of z-stacks, volume renderings and 3D reconstructions, we visualized the amount of attached/detached PM and ER components after plasmolysis and membrane piercings through the wall of cell neighbors.


Assuntos
Briófitas/citologia , Membrana Celular/química , Parede Celular/química , Imageamento Tridimensional/métodos , Organelas/química , Briófitas/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Dissecação , Modelos Biológicos , Imagem Molecular , Organelas/metabolismo
10.
Plants (Basel) ; 9(4)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235617

RESUMO

Plasmolysis is usually introduced to cell biology students as a tool to illustrate the plasma membrane: hypertonic solutions cause the living protoplast to shrink by osmotic water loss; hence, it detaches from the surrounding cell wall. What happens, however, with the subcellular structures in the cell cortex during this process of turgor loss? Here, we investigated the cortical endoplasmic reticulum (ER) in moss protonema cells of Physcomitrella patens in a cell line carrying a transgenic ER marker (GFP-HDEL). The plasma membrane was labelled simultaneously with the fluorescent dye FM4-64 to achieve structural separation. By placing the protonemata in a hypertonic mannitol solution (0.8 M), we were able to follow the behaviour of the cortical ER and the protoplast during plasmolysis by confocal laser scanning microscopy (CLSM). The protoplast shape and structural changes of the ER were further examined after depolymerisation of actin microfilaments with latrunculin B (1 µM). In its natural state, the cortical ER is a dynamic network of fine tubes and cisternae underneath the plasma membrane. Under acute and long-term plasmolysis (up to 45 min), changes in the protoplast form and the cortical ER, as well as the formation of Hechtian strands and Hechtian reticula, were observed. The processing of the high-resolution z-scans allowed the creation of 3D models and gave detailed insight into the ER of living protonema cells before, during and after plasmolysis.

11.
Environ Pollut ; 256: 113397, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31662248

RESUMO

Mosses are frequently used to monitor atmospheric metal contamination but few studies on metal adsorption under controlled conditions are available. Here, the accumulation of the heavy metals copper and zinc was studied in the acrocarp moss Atrichum undulatum. An in vitro culture of A. undulatum was established and the same line, size and equally old remets were exposed to six different treatments representing various metal exposure times and washing scenarios as rain simulation. The metal treatments were done in copper and zinc salts (Cu-acetate, CuSO4, ZnSO4 and ZnCl2, respectively). Energy-Dispersive X-ray microanalysis (EDX) was employed to detect bound heavy metals on the moss plantlets. Element distribution in stems and leaves was measured separately. The aqueous solution of metal salts facilitated an adsorption of both elements in the moss tissue as compared to solid medium. Furthermore, A. undulatum can tolerate pollution of zinc and copper in a distinctive extent; our data point towards a higher zinc tolerance whereas copper is rather harmful. However, semi-quantitatively, less zinc was detected within the moss tissue compared to copper. Interestingly, a strong positive correlation between the accumulation of copper/zinc and iron, and a strong negative correlation between copper/zinc and magnesium, respectively, was documented.


Assuntos
Briófitas/química , Monitoramento Ambiental , Poluentes Ambientais/análise , Metais Pesados/análise , Adsorção , Briófitas/metabolismo , Cobre/metabolismo , Poluição Ambiental , Folhas de Planta/química , Zinco/metabolismo
12.
Plants (Basel) ; 8(10)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554185

RESUMO

Highly evolved carnivorous plants secrete digestive enzymes for degradation of trapped animals and absorb whole macromolecules from their prey by means of endocytosis. (1) Background: In the pitcher-plant family Sarraceniaceae, the production of enzymes is dubious and no evidence for endocytosis is known so far. (2) Methods: Heliamphora nutans, Darlingtonia californica, and nine taxa of Sarracenia are tested for cuticular pores, and for protease and endocytosis of the fluorescent protein analogue FITC-BSA, after 10-48 h of stimulation. (3) Results: Cuticular pores as a prerequisite for enzyme secretion and nutrient uptake are present in all tested species. Permeable cells form clusters in the inner epidermis of the pitchers, but are only little differentiated from impermeable epidermis cells. Proteases are found in S. psittacina, S. leucophylla, S. minor, S. oreophila, S. alabamensis, H. nutans, D. californica lacking only in S. flava and in S. purpurea ssp. purpurea, S. purpurea ssp. venosa, S. rosea, where enzyme production is possibly replaced by degradation via the extraordinary diverse inquiline fauna. S. leucophylla, S. minor, S. oreophila exhibit both protease production and endocytosis; S. psittacina, S. alabamensis, H. nutans, D. californica produce proteases only; no single species shows endocytosis without protease production. (4) Conclusions: Protease secretion seems to be a prerequisite for endocytotic nutrient uptake. Transport of FITC-BSA absorbed by endocytosis towards the vascular tissue of the trap leaves suggests that endocytosis of nutrients is more than a side effect of enzyme secretion.

13.
BMC Complement Altern Med ; 19(1): 221, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31426865

RESUMO

BACKGROUND: Lichens produce a huge diversity of bioactive compounds with several biological effects. Gyrophoric acid (GA) is found in high concentrations in the common lichen Umbilicaria hirsuta, however evidence for biological activity was limited to anti-proliferative activity described on several cancer cell lines. METHODS: We developed and validated a new protocol for GA isolation, resulting in a high yield of highly pure GA (validated by HPLC and NMR) in an easy and time saving manner. Anti-proliferative and pro-apoptotic activity, oxygen radicals formation and stress/survival proteins activity changes was study by flow cytometry. RESULTS: The highly purified GA showed anti-proliferative activity against HeLa (human cervix carcinoma) and other tumor cells. Moreover, GA threated cells showed a significant increase in caspase-3 activation followed by PARP cleavage, PS externalization and cell cycle changes mediated by oxidative stress. Production of oxygen radicals led to DNA damage and changes in stress/survival pathways activation. CONCLUSIONS: GA treatment on HeLa cells clearly indicates ROS production and apoptosis as form of occurred cell death. Moreover, DNA damage and changing activity of stress/survival proteins as p38MAPK, Erk1/2 and Akt mediated by GA treatment confirm pro-apoptotic potential. The pharmacological potential of U. hirsuta derived GA is discussed.


Assuntos
Apoptose/efeitos dos fármacos , Benzoatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Líquens/química , Estresse Oxidativo/efeitos dos fármacos , Ascomicetos/química , Células HeLa , Humanos , Transdução de Sinais/efeitos dos fármacos
14.
Front Plant Sci ; 10: 638, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191569

RESUMO

Plant phenotyping to date typically comprises morphological and physiological profiling in a high-throughput manner. A powerful method that allows for subcellular characterization of organelle stoichiometric/functional characteristics is still missing. Organelle abundance and crosstalk in cell dynamics and signaling plays an important role for understanding crop growth and stress adaptations. However, microscopy cannot be considered a high-throughput technology. The aim of the present study was to develop an approach that enables the estimation of organelle functional stoichiometry and to determine differential subcellular dynamics within and across cultivars in a high-throughput manner. A combination of subcellular non-aqueous fractionation and liquid chromatography mass spectrometry was applied to assign membrane-marker proteins to cell compartmental abundances and functions of Pisum sativum leaves. Based on specific subcellular affiliation, proteotypic marker peptides of the chloroplast, mitochondria and vacuole membranes were selected and synthesized as heavy isotope labeled standards. The rapid and unbiased Mass Western approach for accurate stoichiometry and targeted absolute protein quantification allowed for a proportional organelle abundances measure linked to their functional properties. A 3D Confocal Laser Scanning Microscopy approach was developed to evaluate the Mass Western. Two P. sativum cultivars of varying morphology and physiology were compared. The Mass Western assay enabled a cultivar specific discrimination of the chloroplast to mitochondria to vacuole relations.

15.
Protoplasma ; 256(1): 171-179, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30046945

RESUMO

The negative effect of excess nickel (Ni) on plants is well investigated but there is only little information on its influence on root anatomy and a possible amelioration by chelating agents. In this study, we utilized light microscopy to observe anatomical changes in canola (Brassica napus) roots and investigated the element content by X-ray microanalysis. Ni-tolerant (Con-II) and Ni-sensitive cultivars (Oscar) were selected for this purpose. The plants were treated with 30 ppm NiSO4. Then, citric acid and ethylene-diamine-tetra-acetic acid (EDTA) (alone or in combination) were applied to observe the influence of chelating agents in metal stress amelioration. Ni treatment led to significant swelling of the roots in the Con-II variety as compared to the cultivar Oscar. Application of EDTA reduced the root radius of Con-II plants and this effect for Ni tolerance is discussed. According to X-ray microanalyses, Ni ions were more dispersed in the sensitive cultivar as indicated by metal adsorption to the cell wall. We investigate the hypothesis that an enhanced capacity of binding metals to the cell wall allows the plants to tolerate more heavy metals.


Assuntos
Brassica napus/química , Quelantes/uso terapêutico , Ácido Cítrico/metabolismo , Níquel/química , Raízes de Plantas/química , Quelantes/farmacologia
16.
Ecol Evol ; 8(5): 2781-2787, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29531694

RESUMO

Lichens and mosses often share the same environmental conditions where they compete for substrate and other essential factors. Lichens use secondary metabolites as allelochemicals to repel surrounding plants and potential rivals. In mosses, endoreduplication leads to the occurrence of various ploidy levels in the same individual and has been suggested as an adaptation to abiotic stresses. Here, we show that also biotic factors such as usnic acid, an allelochemical produced by lichens, directly influenced the level of ploidy in mosses. Application of usnic acid changed the nuclei proportion and significantly enhanced the endoreduplication index in two moss species, Physcomitrella patens and Pohlia drummondii. These investigations add a new aspect on secondary metabolites of lichens which count as biotic factors and affect ploidy levels in mosses.

17.
Microsc Microanal ; 24(1): 69-74, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29485025

RESUMO

Bryophytes are usually taken as good bioindicators. However, they represent a large group of terrestrial plants and they express an enormous range of peculiarities within the plant kingdom. With the aim to search for a common pattern of zinc binding, we established axenical in vitro cultures of a dozen bryophyte species that include hornworts, thallose, and leafy liverworts, as well as acrocarp and pleurocarp mosses. The species were grown free of contaminants for many years prior to the application of different treatments, i.e. offering Zn(II) from solid and liquid media and in combination with different anions. The localization and binding of zinc was detected by confocal microscopy using the zinc-specific dye FluoZin™-3. In one of the species, Hypnum cupressiforme (which is widely used for atmospheric heavy metal deposition studies in biomonitoring), semi-quantitative analyses of zinc were performed by energy dispersive X-ray microspectrometry (EDX) in a scanning electron microscope. The results suggest no common pattern of Zn(II) binding in different bryophyte species. Instead, the binding pattern seems to be species specific. Zinc is located in certain areas or cellular compartments, as clearly shown by the EDX measurements in H. cupressiforme.


Assuntos
Briófitas/metabolismo , Zinco/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Ligação Proteica , Microtomografia por Raio-X
18.
J Exp Bot ; 68(15): 4075-4087, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28922772

RESUMO

Plasmolysis of hypocotyl cells of transgenic Arabidopsis thaliana and Nicotiana benthamiana diminishes the dynamics of the remodeling of the endoplasmic reticulum (ER) in the central protoplast, namely that withdrawn from the cell wall, and more persistent cisternae are formed, yet little change in the actin network in the protoplast occurs. Also, protein flow within the ER network in the protoplast, as detected with fluorescence recovery after photobleaching (FRAP), is not affected by plasmolysis. After plasmolysis, another network of strictly tubular ER remains attached to the plasma membrane-wall interface and is contained within the Hechtian strands and reticulum. FRAP studies indicate that protein flow within these ER tubules diminishes. Actin is largely absent from the Hechtian reticulum and the ER becomes primarily associated with altered, branched microtubules. The smaller volume of the central protoplast is accompanied by decreased movement rates of tubules, cisternae, and spheroid organelles, but this reduced movement is not readily reversed by the increase in volume that accompanies deplasmolysis.


Assuntos
Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Protoplastos/fisiologia , Arabidopsis/citologia , Arabidopsis/metabolismo , /metabolismo
19.
Planta ; 246(5): 971-986, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28721563

RESUMO

MAIN CONCLUSION: The basal streptophyte Klebsormidium and the advanced Zygnema show adaptation to terrestrialization. Differences are found in photoprotection and resistance to short-term light changes, but not in CO 2 acquisition. Streptophyte green algae colonized land about 450-500 million years ago giving origin to terrestrial plants. We aim to understand how their physiological adaptations are linked to the ecological conditions (light, water and CO2) characterizing modern terrestrial habitats. A new Klebsormidium isolate from a strongly acidic environment of a former copper mine (Schwarzwand, Austria) is investigated, in comparison to Klebsormidium cf. flaccidum and Zygnema sp. We show that these genera possess different photosynthetic traits and water requirements. Particularly, the Klebsormidium species displayed a higher photoprotection capacity, concluded from non-photochemical quenching (NPQ) and higher tolerance to high light intensity than Zygnema. However, Klebsormidium suffered from photoinhibition when the light intensity in the environment increased rapidly, indicating that NPQ is involved in photoprotection against strong and stable irradiance. Klebsormidium was also highly resistant to cellular water loss (dehydration) under low light. On the other hand, exposure to relatively high light intensity during dehydration caused a harmful over-reduction of the electron transport chain, leading to PSII damages and impairing the ability to recover after rehydration. Thus, we suggest that dehydration is a selective force shaping the adaptation of this species towards low light. Contrary to the photosynthetic characteristics, the inorganic carbon (C i ) acquisition was equivalent between Klebsormidium and Zygnema. Despite their different habitats and restriction to hydro-terrestrial environment, the three organisms showed similar use of CO2 and HCO3- as source of Ci for photosynthesis, pointing out a similar adaptation of their CO2-concentrating mechanisms to terrestrial life.


Assuntos
Adaptação Fisiológica , Dióxido de Carbono/metabolismo , Carofíceas/fisiologia , Fotossíntese/fisiologia , Carofíceas/efeitos da radiação , Desidratação , Dessecação , Ecologia , Ecossistema , Luz , Fenótipo , Fotossíntese/efeitos da radiação , Especificidade da Espécie , Água/fisiologia
20.
Protoplasma ; 254(3): 1307-1315, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27645140

RESUMO

Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens, but there is still little information on the interactions between lichens and bryophytes.In the present study, we used extracts from six lichen thalli containing secondary metabolites like usnic acid, protocetraric acid, atranorin, lecanoric acid, nortistic acid, and thamnolic acid. To observe the influence of these metabolites on bryophytes, the moss Physcomitrella patens was cultivated for 5 weeks under laboratory conditions and treated with lichen extracts. Toxicity of natural mixtures of secondary metabolites was tested at three selected doses (0.001, 0.01, and 0.1 %). When the mixture contained substantial amounts of usnic acid, we observed growth inhibition of protonemata and reduced development of gametophores. Significant differences in cell lengths and widths were also noticed. Furthermore, usnic acid had a strong effect on cell division in protonemata suggesting a strong impact on the early stages of bryophyte development by allelochemicals contained in the lichen secondary metabolites.Biological activities of lichen secondary metabolites were confirmed in several studies such as antiviral, antibacterial, antitumor, antiherbivore, antioxidant, antipyretic, and analgetic action or photoprotection. This work aimed to expand the knowledge on allelopathic effects on bryophyte growth.


Assuntos
Benzofuranos/farmacologia , Bryopsida/crescimento & desenvolvimento , Divisão Celular/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Hidroxibenzoatos/farmacologia , Líquens/química , Salicilatos/farmacologia , Metabolismo Secundário/fisiologia , Alelopatia , Bryopsida/metabolismo , Tamanho Celular/efeitos dos fármacos , Células Germinativas Vegetais/efeitos dos fármacos , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...